This is the class and function reference of the Python API.
You can search for specific modules, classes or functions in the Index.
bolero.controller: Controller¶Controller([config, environment, …]) | 
A controller implements the communication between learning components. | 
ContextualController([config, environment, …]) | 
Controller for contextual problems. | 
bolero.environment: Environment¶Environment | 
Common interface for environments. | 
ContextualEnvironment | 
Common interface for (contextual) environments. | 
SetContext(contextual_environment, context) | 
A contextual environment with a fixed context. | 
ObjectiveFunction([name, n_params, random_state]) | 
Artificial benchmark function. | 
ContextualObjectiveFunction([name, …]) | 
Artificial contextual benchmark function. | 
OptimumTrajectory([x0, g, execution_time, …]) | 
Optimize a trajectory according to some criteria. | 
Catapult([segments, catapult_pos, …]) | 
Catapult environment, a benchmark for contextual policy search. | 
OpenAiGym([env_name, render, log_to_file, …]) | 
Wrapper for OpenAI Gym environments. | 
bolero.behavior_search: Behavior Search¶BehaviorSearch | 
BehaviorSearch (learning algorithm) interface. | 
ContextualBehaviorSearch | 
Common interface for (contextual) behavior search. | 
BlackBoxSearch(behavior, optimizer[, …]) | 
Combine a black box optimizer with a black box behavior. | 
ContextualBlackBoxSearch(behavior, optimizer) | 
Combine a contextual black box optimizer with a black box behavior. | 
JustOptimizer(optimizer) | 
Wrap only the optimizer. | 
JustContextualOptimizer(optimizer) | 
Wrap only the contextual optimizer. | 
MonteCarloRL(action_space[, gamma, epsilon, …]) | 
Tabular Monte Carlo is a model-free reinforcement learning method. | 
bolero.optimizer: Optimizer¶Optimizer | 
Common interface for (non-contextual) optimizers. | 
ContextualOptimizer | 
Common interface for (contextual) optimizers. | 
NoOptimizer([initial_params]) | 
No optimizer. | 
RandomOptimizer([initial_params, …]) | 
Random optimizer. | 
CMAESOptimizer([initial_params, variance, …]) | 
Covariance Matrix Adaptation Evolution Strategy. | 
RestartCMAESOptimizer([initial_params, …]) | 
CMA-ES with restarts. | 
IPOPCMAESOptimizer([initial_params, …]) | 
Increasing population size CMA-ES. | 
BIPOPCMAESOptimizer([initial_params, …]) | 
BI-population CMA-ES. | 
CCMAESOptimizer([initial_params, variance, …]) | 
Contextual Covariance Matrix Adaptation Evolution Strategy. | 
REPSOptimizer([initial_params, variance, …]) | 
Relative Entropy Policy Search (REPS) as Optimizer. | 
CREPSOptimizer([initial_params, variance, …]) | 
Contextual Relative Entropy Policy Search. | 
SkOptOptimizer(dimensions[, base_estimator, …]) | 
Bayesian Optimization from scikit-optimize. | 
ACMESOptimizer([initial_params, variance, …]) | 
CMA-ES with ranking SVM as surrogate model. | 
bolero.representation: Representation¶Behavior | 
Behavior interface. | 
BlackBoxBehavior | 
Can be optimized with black box optimizer. | 
ConstantBehavior([outputs]) | 
Generates constant outputs. | 
DummyBehavior(**kwargs) | 
Dummy behavior allows using environments which do not require behaviors. | 
RandomBehavior([random_state]) | 
Generates random outputs. | 
DMPBehavior([execution_time, dt, …]) | 
Dynamical Movement Primitive. | 
CartesianDMPBehavior([execution_time, dt, …]) | 
Cartesian Space Dynamical Movement Primitive. | 
DMPSequence([n_dmps, execution_times, dt, …]) | 
Sequence of DMPs. | 
LinearBehavior | 
Linear mapping from inputs to outputs. | 
BehaviorTemplate | 
Behavior template interface. | 
HierarchicalBehaviorTemplate(…[, explore]) | 
Behavior template that consists of an upper-level policy and a behavior. | 
bolero.datasets: Datasets¶make_minimum_jerk(start, goal[, …]) | 
Create a minimum jerk trajectory. | 
bolero.wrapper: Wrapper¶CppBLLoader | 
Behavior learning loader. | 
bolero.utils: Utilities¶from_yaml(filename[, conf_path]) | 
Create objects from YAML configuration file. | 
from_yaml_string(yaml_str) | 
Create objects from YAML string. | 
from_dict(config[, name]) | 
Create an object of a class that is fully specified by a config dict. | 
log.get_logger(obj, log_to_file, log_to_stdout) | 
Get logger for given object. | 
dependency.compatible_version(…) | 
Compares version strings. | 
log.HideExtern([stream]) | 
Hide one of the standard streams for external components. | 
ranking_svm.RankingSVM([n_iter, epsilon, …]) | 
Ranking Support Vector Machine. |