bolero.representation
.BlackBoxBehavior¶bolero.representation.
BlackBoxBehavior
[source]¶Can be optimized with black box optimizer.
A behavior that can be optimized with a black box optimizer must be exactly defined by a fixed number of parameters.
Parameters: |
|
---|
__init__
()¶x.__init__(…) initializes x; see help(type(x)) for signature
can_step
()¶Returns if step() can be called again.
Returns: |
|
---|
get_args
()¶Get parameters for this estimator.
Returns: |
|
---|
get_n_params
()[source]¶Get number of parameters.
Returns: |
|
---|
get_outputs
(outputs)¶Get outputs of the last step.
If the output vector consists of positions and derivatives of these, by convention all positions and all derivatives should be stored contiguously.
Parameters: |
|
---|
get_params
()[source]¶Get current parameters.
Returns: |
|
---|
init
(n_inputs, n_outputs)¶Initialize the behavior.
Parameters: |
|
---|
reset
()[source]¶Reset behavior.
This method is usually called after setting the parameters to reuse the current behavior and clear its internal state.
set_inputs
(inputs)¶Set input for the next step.
If the input vector consists of positions and derivatives of these, by convention all positions and all derivatives should be stored contiguously.
Parameters: |
|
---|
set_meta_parameters
(keys, meta_parameters)¶Set meta-parameters.
Meta-parameters could be the goal, obstacles, …
Parameters: |
|
---|
set_params
(params)[source]¶Set new parameter values.
Parameters: |
|
---|
step
()¶Compute output for the received input.
Uses the inputs and meta-parameters to compute the outputs.