bolero.representation.BlackBoxBehavior¶bolero.representation.BlackBoxBehavior[source]¶Can be optimized with black box optimizer.
A behavior that can be optimized with a black box optimizer must be exactly defined by a fixed number of parameters.
| Parameters: |
|
|---|
__init__()¶x.__init__(…) initializes x; see help(type(x)) for signature
can_step()¶Returns if step() can be called again.
| Returns: |
|
|---|
get_args()¶Get parameters for this estimator.
| Returns: |
|
|---|
get_n_params()[source]¶Get number of parameters.
| Returns: |
|
|---|
get_outputs(outputs)¶Get outputs of the last step.
If the output vector consists of positions and derivatives of these, by convention all positions and all derivatives should be stored contiguously.
| Parameters: |
|
|---|
get_params()[source]¶Get current parameters.
| Returns: |
|
|---|
init(n_inputs, n_outputs)¶Initialize the behavior.
| Parameters: |
|
|---|
reset()[source]¶Reset behavior.
This method is usually called after setting the parameters to reuse the current behavior and clear its internal state.
set_inputs(inputs)¶Set input for the next step.
If the input vector consists of positions and derivatives of these, by convention all positions and all derivatives should be stored contiguously.
| Parameters: |
|
|---|
set_meta_parameters(keys, meta_parameters)¶Set meta-parameters.
Meta-parameters could be the goal, obstacles, …
| Parameters: |
|
|---|
set_params(params)[source]¶Set new parameter values.
| Parameters: |
|
|---|
step()¶Compute output for the received input.
Uses the inputs and meta-parameters to compute the outputs.