Fork me on GitHub

bolero.representation.DummyBehavior

class bolero.representation.DummyBehavior(**kwargs)[source]

Dummy behavior allows using environments which do not require behaviors.

Some environments (e.g. the catapult environment) do not require behavior- search to learn actual behaviors but rather only to learn parameters (velocity and angle of a shoot in case of the catapult). This behavior encapsulates the parameters learned by the optimizer and returns them via get_outputs() to the environment whenever required. It thus connects environment and optimizer directly.

__init__(**kwargs)[source]
can_step()

Returns if step() can be called again.

Returns:
can_step : bool

Can we call step() again?

get_args()

Get parameters for this estimator.

Returns:
params : mapping of string to any

Parameter names mapped to their values.

get_n_params()[source]

Get number of parameters.

Returns:
n_params : int

Number of parameters that will be optimized.

get_outputs(outputs)[source]

Get outputs of the last step.

Parameters:
outputs : array-like, shape = (n_outputs,)

outputs, e.g. next action, will be updated

get_params()[source]

Get current parameters.

Returns:
params : array-like, shape = (n_params,)

Current parameters.

init(n_inputs, n_outputs)[source]

Initialize the behavior.

Parameters:
n_inputs : int

number of inputs

n_outputs : int

number of outputs

reset()[source]

Reset behavior.

Does nothing.

set_inputs(inputs)[source]

Set input for the next step.

Parameters:
inputs : array-like, shape = (0,)

inputs, e.g. current state of the system

set_meta_parameters(keys, meta_parameters)[source]

Set meta parameters (none defined for dummy behavior).

set_params(params)[source]

Set new parameter values.

Parameters:
params : array-like, shape = (n_params,)

New parameters.

step()[source]

Does nothing in DummyBehavior.