Fork me on GitHub

bolero.environment.ObjectiveFunction

class bolero.environment.ObjectiveFunction(name='Sphere', n_params=2, random_state=None)[source]

Artificial benchmark function.

Parameters:
name : string, optional (default: ‘Sphere’)

Name of the objective function. Possible options are: ‘Sphere’, ‘Ellipsoidal’, ‘Rastrigin’, ‘BuecheRastrigin’, ‘LinearSlope’, ‘AttractiveSector’, ‘StepEllipsoidal’, ‘Rosenbrock’, ‘RosenbrockRotated’, ‘EllipsoidalRotated’, ‘Discus’, ‘BentCigar’, ‘SharpRidge’, ‘DifferentPowers’, ‘RastriginRotated’, ‘Weierstrass’, ‘SchaffersF7’, ‘SchaffersF7Ill’, ‘CompositeGriewankRosenbrockF8F2’, ‘Schwefel’, ‘GallaghersGaussian101mePeaks’, ‘GallaghersGaussian21hiPeaks’, ‘Katsuura’, ‘LunacekBiRastrigin’

n_params : int, optional (default: 2)

Number of dimensions

random_state : RandomState or int, optional (default: None)

Random number generator or seed

__init__(name='Sphere', n_params=2, random_state=None)[source]
get_args()

Get parameters for this estimator.

Returns:
params : mapping of string to any

Parameter names mapped to their values.