bolero.optimizer
.CCMAESOptimizer¶bolero.optimizer.
CCMAESOptimizer
(initial_params=None, variance=1.0, covariance=None, n_samples_per_update=None, context_features=None, baseline_degree=2, gamma=0.0001, log_to_file=False, log_to_stdout=False, random_state=None, **kwargs)[source]¶Contextual Covariance Matrix Adaptation Evolution Strategy.
This contextual version of CMAESOptimizer
inherits the properties from the original algorithm. More information
on the algorithm can be found in the original publication [1]. A major
advantage over C-REPS is that it quickly adapts the step size.
C-CMA-ES internally models the context-dependent baseline with polynomial ridge regression. The degree of the polynomial can be configured. The regularization coefficient is shared with the upper-level policy. Context features are only used for the upper-level policy.
Parameters: |
|
---|
References
[1] | (1, 2) Abdolmaleki, A.; Price, B.; Lau, N.; Paulo Reis, L.; Neumann, G. Contextual Covariance Matrix Adaptation Evolution Strategies. |
__init__
(initial_params=None, variance=1.0, covariance=None, n_samples_per_update=None, context_features=None, baseline_degree=2, gamma=0.0001, log_to_file=False, log_to_stdout=False, random_state=None, **kwargs)[source]¶best_policy
()[source]¶Return current best estimate of contextual policy.
Returns: |
|
---|
get_args
()¶Get parameters for this estimator.
Returns: |
|
---|
get_desired_context
()[source]¶C-CMA-ES does not actively select the context.
Returns: |
|
---|
get_next_parameters
(params, explore=True)[source]¶Get next individual/parameter vector for evaluation.
Parameters: |
|
---|
init
(n_params, n_context_dims)[source]¶Initialize optimizer.
Parameters: |
|
---|
is_behavior_learning_done
()[source]¶Check if the optimization is finished.
Returns: |
|
---|