bolero.optimizer.CMAESOptimizer¶bolero.optimizer.CMAESOptimizer(initial_params=None, variance=1.0, covariance=None, n_samples_per_update=None, active=False, bounds=None, maximize=True, min_variance=9.8607613152626476e-32, min_fitness_dist=4.4408920985006262e-16, max_condition=10000000.0, log_to_file=False, log_to_stdout=False, random_state=None)[source]¶Covariance Matrix Adaptation Evolution Strategy.
See Wikipedia for details.
Plain CMA-ES [1] is considered to be useful for
objective functions. However, in some cases CMA-ES will be outperformed by other methods:
| Parameters: |
|
|---|
References
| [1] | (1, 2) Hansen, N.; Ostermeier, A. Completely Derandomized Self-Adaptation in Evolution Strategies. In: Evolutionary Computation, 9(2), pp. 159-195. https://www.lri.fr/~hansen/cmaartic.pdf |
__init__(initial_params=None, variance=1.0, covariance=None, n_samples_per_update=None, active=False, bounds=None, maximize=True, min_variance=9.8607613152626476e-32, min_fitness_dist=4.4408920985006262e-16, max_condition=10000000.0, log_to_file=False, log_to_stdout=False, random_state=None)[source]¶get_args()¶Get parameters for this estimator.
| Returns: |
|
|---|
get_best_fitness()[source]¶Get the best observed fitness.
| Returns: |
|
|---|
get_best_parameters(method='best')[source]¶Get the best parameters.
| Parameters: |
|
|---|---|
| Returns: |
|
get_next_parameters(params)[source]¶Get next individual/parameter vector for evaluation.
| Parameters: |
|
|---|
init(n_params)[source]¶Initialize the behavior search.
| Parameters: |
|
|---|