bolero.environment
.OptimumTrajectory¶bolero.environment.
OptimumTrajectory
(x0=array([ 0., 0.]), g=array([ 1., 1.]), execution_time=1.0, dt=0.01, obstacles=None, obstacle_dist=0.1, penalty_start_dist=0.0, penalty_goal_dist=0.0, penalty_vel=0.0, penalty_acc=0.0, penalty_obstacle=0.0, log_to_file=False, log_to_stdout=False)[source]¶Optimize a trajectory according to some criteria.
Parameters: |
|
---|
__init__
(x0=array([ 0., 0.]), g=array([ 1., 1.]), execution_time=1.0, dt=0.01, obstacles=None, obstacle_dist=0.1, penalty_start_dist=0.0, penalty_goal_dist=0.0, penalty_vel=0.0, penalty_acc=0.0, penalty_obstacle=0.0, log_to_file=False, log_to_stdout=False)[source]¶get_acceleration
()[source]¶Get acceleration values during the performed movement.
Returns: |
|
---|
get_args
()¶Get parameters for this estimator.
Returns: |
|
---|
get_collision
(obstacle_filter=None)[source]¶Get list of collisions with obstacles during the performed movement.
Parameters: |
|
---|
get_feedback
()[source]¶Get reward per timestamp based on weighted criteria (penalties)
Returns: |
|
---|
get_goal_dist
()[source]¶Get distance of trajectory end and desired goal location.
Returns: |
|
---|
get_num_inputs
()[source]¶Get number of environment inputs.
Returns: |
|
---|
get_num_obstacles
()[source]¶Get number of obstacles in environment.
Returns: |
|
---|
get_num_outputs
()[source]¶Get number of environment outputs.
Returns: |
|
---|
get_outputs
(values)[source]¶Get environment outputs.
Parameters: |
|
---|
get_speed
()[source]¶Get speed values during the performed movement.
Returns: |
|
---|
get_start_dist
()[source]¶Get distance of trajectory start and desired start location.
Returns: |
|
---|
is_behavior_learning_done
()[source]¶Check if the behavior learning is finished.
Returns: |
|
---|
is_evaluation_done
()[source]¶Check if the time is over.
Returns: |
|
---|