bolero.environment.OptimumTrajectory¶bolero.environment.OptimumTrajectory(x0=array([ 0., 0.]), g=array([ 1., 1.]), execution_time=1.0, dt=0.01, obstacles=None, obstacle_dist=0.1, penalty_start_dist=0.0, penalty_goal_dist=0.0, penalty_vel=0.0, penalty_acc=0.0, penalty_obstacle=0.0, log_to_file=False, log_to_stdout=False)[source]¶Optimize a trajectory according to some criteria.
| Parameters: |
|
|---|
__init__(x0=array([ 0., 0.]), g=array([ 1., 1.]), execution_time=1.0, dt=0.01, obstacles=None, obstacle_dist=0.1, penalty_start_dist=0.0, penalty_goal_dist=0.0, penalty_vel=0.0, penalty_acc=0.0, penalty_obstacle=0.0, log_to_file=False, log_to_stdout=False)[source]¶get_acceleration()[source]¶Get acceleration values during the performed movement.
| Returns: |
|
|---|
get_args()¶Get parameters for this estimator.
| Returns: |
|
|---|
get_collision(obstacle_filter=None)[source]¶Get list of collisions with obstacles during the performed movement.
| Parameters: |
|
|---|
get_feedback()[source]¶Get reward per timestamp based on weighted criteria (penalties)
| Returns: |
|
|---|
get_goal_dist()[source]¶Get distance of trajectory end and desired goal location.
| Returns: |
|
|---|
get_num_inputs()[source]¶Get number of environment inputs.
| Returns: |
|
|---|
get_num_obstacles()[source]¶Get number of obstacles in environment.
| Returns: |
|
|---|
get_num_outputs()[source]¶Get number of environment outputs.
| Returns: |
|
|---|
get_outputs(values)[source]¶Get environment outputs.
| Parameters: |
|
|---|
get_speed()[source]¶Get speed values during the performed movement.
| Returns: |
|
|---|
get_start_dist()[source]¶Get distance of trajectory start and desired start location.
| Returns: |
|
|---|
is_behavior_learning_done()[source]¶Check if the behavior learning is finished.
| Returns: |
|
|---|
is_evaluation_done()[source]¶Check if the time is over.
| Returns: |
|
|---|