bolero.optimizer
.RestartCMAESOptimizer¶bolero.optimizer.
RestartCMAESOptimizer
(initial_params=None, variance=1.0, covariance=None, n_samples_per_update=None, active=False, bounds=None, maximize=True, min_variance=9.8607613152626476e-32, min_fitness_dist=4.4408920985006262e-16, max_condition=10000000.0, log_to_file=False, log_to_stdout=False, random_state=None)[source]¶CMA-ES with restarts.
This will outperform plain CMA-ES on multimodal functions.
Parameters: |
|
---|
__init__
(initial_params=None, variance=1.0, covariance=None, n_samples_per_update=None, active=False, bounds=None, maximize=True, min_variance=9.8607613152626476e-32, min_fitness_dist=4.4408920985006262e-16, max_condition=10000000.0, log_to_file=False, log_to_stdout=False, random_state=None)[source]¶get_args
()¶Get parameters for this estimator.
Returns: |
|
---|
get_best_fitness
()¶Get the best observed fitness.
Returns: |
|
---|
get_best_parameters
(method='best')¶Get the best parameters.
Parameters: |
|
---|---|
Returns: |
|
get_next_parameters
(params)¶Get next individual/parameter vector for evaluation.
Parameters: |
|
---|
init
(n_params)¶Initialize the behavior search.
Parameters: |
|
---|
is_behavior_learning_done
()[source]¶Returns false because we will restart and not stop.
Returns: |
|
---|
set_evaluation_feedback
(feedback)¶Set feedbacks for the parameter vector.
Parameters: |
|
---|