bolero.optimizer.RestartCMAESOptimizer¶bolero.optimizer.RestartCMAESOptimizer(initial_params=None, variance=1.0, covariance=None, n_samples_per_update=None, active=False, bounds=None, maximize=True, min_variance=9.8607613152626476e-32, min_fitness_dist=4.4408920985006262e-16, max_condition=10000000.0, log_to_file=False, log_to_stdout=False, random_state=None)[source]¶CMA-ES with restarts.
This will outperform plain CMA-ES on multimodal functions.
| Parameters: |
|
|---|
__init__(initial_params=None, variance=1.0, covariance=None, n_samples_per_update=None, active=False, bounds=None, maximize=True, min_variance=9.8607613152626476e-32, min_fitness_dist=4.4408920985006262e-16, max_condition=10000000.0, log_to_file=False, log_to_stdout=False, random_state=None)[source]¶get_args()¶Get parameters for this estimator.
| Returns: |
|
|---|
get_best_fitness()¶Get the best observed fitness.
| Returns: |
|
|---|
get_best_parameters(method='best')¶Get the best parameters.
| Parameters: |
|
|---|---|
| Returns: |
|
get_next_parameters(params)¶Get next individual/parameter vector for evaluation.
| Parameters: |
|
|---|
init(n_params)¶Initialize the behavior search.
| Parameters: |
|
|---|
is_behavior_learning_done()[source]¶Returns false because we will restart and not stop.
| Returns: |
|
|---|
set_evaluation_feedback(feedback)¶Set feedbacks for the parameter vector.
| Parameters: |
|
|---|