Source code for pytransform3d.rotations._conversions

"""Conversions between rotation representations."""
import math
import numpy as np
from ._utils import (
    check_matrix, check_quaternion, check_axis_angle, check_compact_axis_angle,
    norm_angle, norm_vector, norm_axis_angle,
    perpendicular_to_vector, perpendicular_to_vectors, vector_projection)
from ._constants import unitx, unity, unitz, eps


[docs]def cross_product_matrix(v): r"""Generate the cross-product matrix of a vector. The cross-product matrix :math:`\boldsymbol{V}` satisfies the equation .. math:: \boldsymbol{V} \boldsymbol{w} = \boldsymbol{v} \times \boldsymbol{w} It is a skew-symmetric (antisymmetric) matrix, i.e. :math:`-\boldsymbol{V} = \boldsymbol{V}^T`. Parameters ---------- v : array-like, shape (3,) 3d vector Returns ------- V : array-like, shape (3, 3) Cross-product matrix """ return np.array([[0.0, -v[2], v[1]], [v[2], 0.0, -v[0]], [-v[1], v[0], 0.0]])
[docs]def matrix_from_two_vectors(a, b): """Compute rotation matrix from two vectors. We assume that the two given vectors form a plane so that we can compute a third, orthogonal vector with the cross product. The x-axis will point in the same direction as a, the y-axis corresponds to the normalized vector rejection of b on a, and the z-axis is the cross product of the other basis vectors. Parameters ---------- a : array-like, shape (3,) First vector, must not be 0 b : array-like, shape (3,) Second vector, must not be 0 or parallel to a Returns ------- R : array, shape (3, 3) Rotation matrix Raises ------ ValueError If vectors are parallel or one of them is the zero vector """ if np.linalg.norm(a) == 0: raise ValueError("a must not be the zero vector.") if np.linalg.norm(b) == 0: raise ValueError("b must not be the zero vector.") c = perpendicular_to_vectors(a, b) if np.linalg.norm(c) == 0: raise ValueError("a and b must not be parallel.") a = norm_vector(a) b_on_a_projection = vector_projection(b, a) b_on_a_rejection = b - b_on_a_projection b = norm_vector(b_on_a_rejection) c = norm_vector(c) return np.column_stack((a, b, c))
[docs]def matrix_from_axis_angle(a): """Compute rotation matrix from axis-angle. This is called exponential map or Rodrigues' formula. This typically results in an active rotation matrix. Parameters ---------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle) Returns ------- R : array, shape (3, 3) Rotation matrix """ a = check_axis_angle(a) ux, uy, uz, theta = a c = math.cos(theta) s = math.sin(theta) ci = 1.0 - c R = np.array([[ci * ux * ux + c, ci * ux * uy - uz * s, ci * ux * uz + uy * s], [ci * uy * ux + uz * s, ci * uy * uy + c, ci * uy * uz - ux * s], [ci * uz * ux - uy * s, ci * uz * uy + ux * s, ci * uz * uz + c], ]) # This is equivalent to # R = (np.eye(3) * np.cos(a[3]) + # (1.0 - np.cos(a[3])) * a[:3, np.newaxis].dot(a[np.newaxis, :3]) + # cross_product_matrix(a[:3]) * np.sin(a[3])) # or # w = cross_product_matrix(a[:3]) # R = np.eye(3) + np.sin(a[3]) * w + (1.0 - np.cos(a[3])) * w.dot(w) return R
[docs]def matrix_from_compact_axis_angle(a): """Compute rotation matrix from compact axis-angle. This is called exponential map or Rodrigues' formula. This typically results in an active rotation matrix. Parameters ---------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ a = axis_angle_from_compact_axis_angle(a) return matrix_from_axis_angle(a)
[docs]def matrix_from_quaternion(q): """Compute rotation matrix from quaternion. This typically results in an active rotation matrix. Parameters ---------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ q = check_quaternion(q) uq = norm_vector(q) w, x, y, z = uq x2 = 2.0 * x * x y2 = 2.0 * y * y z2 = 2.0 * z * z xy = 2.0 * x * y xz = 2.0 * x * z yz = 2.0 * y * z xw = 2.0 * x * w yw = 2.0 * y * w zw = 2.0 * z * w R = np.array([[1.0 - y2 - z2, xy - zw, xz + yw], [xy + zw, 1.0 - x2 - z2, yz - xw], [xz - yw, yz + xw, 1.0 - x2 - y2]]) return R
[docs]def matrix_from_angle(basis, angle): """Compute passive rotation matrix from rotation about basis vector. Parameters ---------- basis : int from [0, 1, 2] The rotation axis (0: x, 1: y, 2: z) angle : float Rotation angle Returns ------- R : array-like, shape (3, 3) Rotation matrix Raises ------ ValueError If basis is invalid """ c = np.cos(angle) s = np.sin(angle) if basis == 0: R = np.array([[1.0, 0.0, 0.0], [0.0, c, s], [0.0, -s, c]]) elif basis == 1: R = np.array([[c, 0.0, -s], [0.0, 1.0, 0.0], [s, 0.0, c]]) elif basis == 2: R = np.array([[c, s, 0.0], [-s, c, 0.0], [0.0, 0.0, 1.0]]) else: raise ValueError("Basis must be in [0, 1, 2]") return R
passive_matrix_from_angle = matrix_from_angle
[docs]def active_matrix_from_angle(basis, angle): """Compute active rotation matrix from rotation about basis vector. Parameters ---------- basis : int from [0, 1, 2] The rotation axis (0: x, 1: y, 2: z) angle : float Rotation angle Returns ------- R : array, shape (3, 3) Rotation matrix Raises ------ ValueError If basis is invalid """ c = np.cos(angle) s = np.sin(angle) if basis == 0: R = np.array([[1.0, 0.0, 0.0], [0.0, c, -s], [0.0, s, c]]) elif basis == 1: R = np.array([[c, 0.0, s], [0.0, 1.0, 0.0], [-s, 0.0, c]]) elif basis == 2: R = np.array([[c, -s, 0.0], [s, c, 0.0], [0.0, 0.0, 1.0]]) else: raise ValueError("Basis must be in [0, 1, 2]") return R
[docs]def matrix_from_euler_xyz(e): """Compute passive rotation matrix from intrinsic xyz Tait-Bryan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = passive_matrix_from_angle(0, alpha).dot( passive_matrix_from_angle(1, beta)).dot( passive_matrix_from_angle(2, gamma)) return R
[docs]def matrix_from_euler_zyx(e): """Compute passive rotation matrix from intrinsic zyx Tait-Bryan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ gamma, beta, alpha = e R = passive_matrix_from_angle(2, gamma).dot( passive_matrix_from_angle(1, beta)).dot( passive_matrix_from_angle(0, alpha)) return R
[docs]def active_matrix_from_intrinsic_euler_xzx(e): """Compute active rotation matrix from intrinsic xzx Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, z'-, and x''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, alpha).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(0, gamma)) return R
[docs]def active_matrix_from_extrinsic_euler_xzx(e): """Compute active rotation matrix from extrinsic xzx Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, z-, and x-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, gamma).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(0, alpha)) return R
[docs]def active_matrix_from_intrinsic_euler_xyx(e): """Compute active rotation matrix from intrinsic xyx Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, y'-, and x''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, alpha).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(0, gamma)) return R
[docs]def active_matrix_from_extrinsic_euler_xyx(e): """Compute active rotation matrix from extrinsic xyx Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, y-, and x-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, gamma).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(0, alpha)) return R
[docs]def active_matrix_from_intrinsic_euler_yxy(e): """Compute active rotation matrix from intrinsic yxy Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, x'-, and y''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, alpha).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(1, gamma)) return R
[docs]def active_matrix_from_extrinsic_euler_yxy(e): """Compute active rotation matrix from extrinsic yxy Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, x-, and y-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, gamma).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(1, alpha)) return R
[docs]def active_matrix_from_intrinsic_euler_yzy(e): """Compute active rotation matrix from intrinsic yzy Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, z'-, and y''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, alpha).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(1, gamma)) return R
[docs]def active_matrix_from_extrinsic_euler_yzy(e): """Compute active rotation matrix from extrinsic yzy Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, z-, and y-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, gamma).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(1, alpha)) return R
[docs]def active_matrix_from_intrinsic_euler_zyz(e): """Compute active rotation matrix from intrinsic zyz Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, y'-, and z''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, alpha).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(2, gamma)) return R
[docs]def active_matrix_from_extrinsic_euler_zyz(e): """Compute active rotation matrix from extrinsic zyz Euler angles. .. warning:: This function was not implemented correctly in versions 1.3 and 1.4 as the order of the angles was reversed, which actually corresponds to intrinsic rotations. This has been fixed in version 1.5. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, y-, and z-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, gamma).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(2, alpha)) return R
[docs]def active_matrix_from_intrinsic_euler_zxz(e): """Compute active rotation matrix from intrinsic zxz Euler angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, x'-, and z''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, alpha).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(2, gamma)) return R
[docs]def active_matrix_from_extrinsic_euler_zxz(e): """Compute active rotation matrix from extrinsic zxz Euler angles. .. warning:: This function was not implemented correctly in versions 1.3 and 1.4 as the order of the angles was reversed, which actually corresponds to intrinsic rotations. This has been fixed in version 1.5. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, x-, and z-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, gamma).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(2, alpha)) return R
[docs]def active_matrix_from_intrinsic_euler_xzy(e): """Compute active rotation matrix from intrinsic xzy Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, z'-, and y''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, alpha).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(1, gamma)) return R
[docs]def active_matrix_from_extrinsic_euler_xzy(e): """Compute active rotation matrix from extrinsic xzy Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, z-, and y-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, gamma).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(0, alpha)) return R
[docs]def active_matrix_from_intrinsic_euler_xyz(e): """Compute active rotation matrix from intrinsic xyz Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, alpha).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(2, gamma)) return R
[docs]def active_matrix_from_extrinsic_euler_xyz(e): """Compute active rotation matrix from extrinsic xyz Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around x-, y-, and z-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, gamma).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(0, alpha)) return R
[docs]def active_matrix_from_intrinsic_euler_yxz(e): """Compute active rotation matrix from intrinsic yxz Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, x'-, and z''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, alpha).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(2, gamma)) return R
[docs]def active_matrix_from_extrinsic_euler_yxz(e): """Compute active rotation matrix from extrinsic yxz Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, x-, and z-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, gamma).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(1, alpha)) return R
[docs]def active_matrix_from_intrinsic_euler_yzx(e): """Compute active rotation matrix from intrinsic yzx Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, z'-, and x''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, alpha).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(0, gamma)) return R
[docs]def active_matrix_from_extrinsic_euler_yzx(e): """Compute active rotation matrix from extrinsic yzx Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around y-, z-, and x-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, gamma).dot( active_matrix_from_angle(2, beta)).dot( active_matrix_from_angle(1, alpha)) return R
[docs]def active_matrix_from_intrinsic_euler_zyx(e): """Compute active rotation matrix from intrinsic zyx Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, alpha).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(0, gamma)) return R
[docs]def active_matrix_from_extrinsic_euler_zyx(e): """Compute active rotation matrix from extrinsic zyx Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, y-, and x-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(0, gamma).dot( active_matrix_from_angle(1, beta)).dot( active_matrix_from_angle(2, alpha)) return R
[docs]def active_matrix_from_intrinsic_euler_zxy(e): """Compute active rotation matrix from intrinsic zxy Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, x'-, and y''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(2, alpha).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(1, gamma)) return R
[docs]def active_matrix_from_extrinsic_euler_zxy(e): """Compute active rotation matrix from extrinsic zxy Cardan angles. Parameters ---------- e : array-like, shape (3,) Angles for rotation around z-, x-, and y-axes (extrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix """ alpha, beta, gamma = e R = active_matrix_from_angle(1, gamma).dot( active_matrix_from_angle(0, beta)).dot( active_matrix_from_angle(2, alpha)) return R
[docs]def active_matrix_from_extrinsic_roll_pitch_yaw(rpy): """Compute active rotation matrix from extrinsic roll, pitch, and yaw. Parameters ---------- rpy : array-like, shape (3,) Angles for rotation around x- (roll), y- (pitch), and z-axes (yaw), extrinsic rotations Returns ------- R : array-like, shape (3, 3) Rotation matrix """ return active_matrix_from_extrinsic_euler_xyz(rpy)
[docs]def matrix_from(R=None, a=None, q=None, e_xyz=None, e_zyx=None): """Compute rotation matrix from another representation. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle) q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) e_xyz : array-like, shape (3,) Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations) e_zyx : array-like, shape (3,) Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations) Returns ------- R : array-like, shape (3, 3) Rotation matrix Raises ------ ValueError If no rotation is given """ if R is not None: return R if a is not None: return matrix_from_axis_angle(a) if q is not None: return matrix_from_quaternion(q) if e_xyz is not None: return matrix_from_euler_xyz(e_xyz) if e_zyx is not None: return matrix_from_euler_zyx(e_zyx) raise ValueError("Cannot compute rotation matrix from no rotation.")
def _general_intrinsic_euler_from_active_matrix( R, n1, n2, n3, proper_euler, strict_check=True): """General algorithm to extract intrinsic euler angles from a matrix. The implementation is based on SciPy's implementation: https://github.com/scipy/scipy/blob/master/scipy/spatial/transform/rotation.pyx Parameters ---------- R : array-like, shape (3, 3) Active rotation matrix n1 : array, shape (3,) First rotation axis (basis vector) n2 : array, shape (3,) Second rotation axis (basis vector) n3 : array, shape (3,) Third rotation axis (basis vector) proper_euler : bool Is this an Euler angle convention or a Cardan / Tait-Bryan convention? Proper Euler angles rotate about the same axis twice, for example, z, y', and z''. strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- euler_angles : array, shape (3,) Extracted intrinsic rotation angles in radians about the axes n1, n2, and n3 in this order. The first and last angle are normalized to [-pi, pi]. The middle angle is normalized to either [0, pi] (proper Euler angles) or [-pi/2, pi/2] (Cardan / Tait-Bryan angles). References ---------- Shuster, Markley: General Formula for Extracting the Euler Angles, https://arc.aiaa.org/doi/abs/10.2514/1.16622 """ D = check_matrix(R, strict_check=strict_check) # Differences to the paper: # - we call the angles alpha, beta, and gamma # - we obtain angles from intrinsic rotations, thus some matrices are # transposed like in SciPy's implementation # Step 2 # - Equation 5 n1_cross_n2 = np.cross(n1, n2) lmbda = np.arctan2( np.dot(n1_cross_n2, n3), np.dot(n1, n3) ) # - Equation 6 C = np.vstack((n2, n1_cross_n2, n1)) # Step 3 # - Equation 8 CDCT = np.dot(np.dot(C, D), C.T) O = np.dot(CDCT, active_matrix_from_angle(0, lmbda).T) # Step 4 # - Equation 10a beta = lmbda + np.arccos(O[2, 2]) safe1 = abs(beta - lmbda) >= np.finfo(float).eps safe2 = abs(beta - lmbda - np.pi) >= np.finfo(float).eps if safe1 and safe2: # Default case, no gimbal lock # Step 5 # - Equation 10b alpha = np.arctan2(O[0, 2], -O[1, 2]) # - Equation 10c gamma = np.arctan2(O[2, 0], O[2, 1]) # Step 7 if proper_euler: valid_beta = 0.0 <= beta <= np.pi else: # Cardan / Tait-Bryan angles valid_beta = -0.5 * np.pi <= beta <= 0.5 * np.pi # - Equation 12 if not valid_beta: alpha += np.pi beta = 2.0 * lmbda - beta gamma -= np.pi else: # Step 6 - Handle gimbal locks # a) gamma = 0.0 if not safe1: # b) alpha = np.arctan2(O[1, 0] - O[0, 1], O[0, 0] + O[1, 1]) else: # c) alpha = np.arctan2(O[1, 0] + O[0, 1], O[0, 0] - O[1, 1]) euler_angles = norm_angle([alpha, beta, gamma]) return euler_angles
[docs]def euler_xyz_from_matrix(R, strict_check=True): """Compute xyz Euler angles from passive rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Passive rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e_xyz : array-like, shape (3,) Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations) """ R = check_matrix(R, strict_check=strict_check) if np.abs(R[0, 2]) != 1.0: # NOTE: There are two solutions: angle2 and pi - angle2! angle2 = np.arcsin(-R[0, 2]) angle1 = np.arctan2(R[1, 2] / np.cos(angle2), R[2, 2] / np.cos(angle2)) angle3 = np.arctan2(R[0, 1] / np.cos(angle2), R[0, 0] / np.cos(angle2)) else: if R[0, 2] == 1.0: angle3 = 0.0 angle2 = -np.pi / 2.0 angle1 = np.arctan2(-R[1, 0], -R[2, 0]) else: angle3 = 0.0 angle2 = np.pi / 2.0 angle1 = np.arctan2(R[1, 0], R[2, 0]) return np.array([angle1, angle2, angle3])
[docs]def euler_zyx_from_matrix(R, strict_check=True): """Compute zyx Euler angles from passive rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Passive rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e_zyx : array-like, shape (3,) Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations) """ R = check_matrix(R, strict_check=strict_check) if np.abs(R[2, 0]) != 1.0: # NOTE: There are two solutions: angle2 and pi - angle2! angle2 = np.arcsin(R[2, 0]) angle3 = np.arctan2(-R[2, 1] / np.cos(angle2), R[2, 2] / np.cos(angle2)) angle1 = np.arctan2(-R[1, 0] / np.cos(angle2), R[0, 0] / np.cos(angle2)) else: if R[2, 0] == 1.0: angle3 = 0.0 angle2 = np.pi / 2.0 angle1 = np.arctan2(R[0, 1], -R[0, 2]) else: angle3 = 0.0 angle2 = -np.pi / 2.0 angle1 = np.arctan2(R[0, 1], R[0, 2]) return np.array([angle1, angle2, angle3])
[docs]def intrinsic_euler_xzx_from_active_matrix(R, strict_check=True): """Compute intrinsic xzx Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array, shape (3,) Angles for rotation around x-, z'-, and x''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unitz, unitx, True, strict_check)
[docs]def extrinsic_euler_xzx_from_active_matrix(R, strict_check=True): """Compute active rotation matrix from extrinsic xzx Euler angles. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around x-, z-, and x-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unitz, unitx, True, strict_check)[::-1]
[docs]def intrinsic_euler_xyx_from_active_matrix(R, strict_check=True): """Compute intrinsic xyx Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array, shape (3,) Angles for rotation around x-, y'-, and x''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unity, unitx, True, strict_check)
[docs]def extrinsic_euler_xyx_from_active_matrix(R, strict_check=True): """Compute extrinsic xyx Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array, shape (3,) Angles for rotation around x-, y-, and x-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unity, unitx, True, strict_check)[::-1]
[docs]def intrinsic_euler_yxy_from_active_matrix(R, strict_check=True): """Compute intrinsic yxy Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, x'-, and y''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitx, unity, True, strict_check)
[docs]def extrinsic_euler_yxy_from_active_matrix(R, strict_check=True): """Compute extrinsic yxy Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, x-, and y-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitx, unity, True, strict_check)[::-1]
[docs]def intrinsic_euler_yzy_from_active_matrix(R, strict_check=True): """Compute intrinsic yzy Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, z'-, and y''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitz, unity, True, strict_check)
[docs]def extrinsic_euler_yzy_from_active_matrix(R, strict_check=True): """Compute extrinsic yzy Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, z-, and y-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitz, unity, True, strict_check)[::-1]
[docs]def intrinsic_euler_zyz_from_active_matrix(R, strict_check=True): """Compute intrinsic zyz Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around z-, y'-, and z''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unity, unitz, True, strict_check)
[docs]def extrinsic_euler_zyz_from_active_matrix(R, strict_check=True): """Compute extrinsic zyz Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around z-, y-, and z-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unity, unitz, True, strict_check)[::-1]
[docs]def intrinsic_euler_zxz_from_active_matrix(R, strict_check=True): """Compute intrinsic zxz Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around z-, x'-, and z''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unitx, unitz, True, strict_check)
[docs]def extrinsic_euler_zxz_from_active_matrix(R, strict_check=True): """Compute extrinsic zxz Euler angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around z-, x-, and z-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unitx, unitz, True, strict_check)[::-1]
[docs]def intrinsic_euler_xzy_from_active_matrix(R, strict_check=True): """Compute intrinsic xzy Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around x-, z'-, and y''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unitz, unity, False, strict_check)
[docs]def extrinsic_euler_xzy_from_active_matrix(R, strict_check=True): """Compute extrinsic xzy Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around x-, z-, and y-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitz, unitx, False, strict_check)[::-1]
[docs]def intrinsic_euler_xyz_from_active_matrix(R, strict_check=True): """Compute intrinsic xyz Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around x-, y'-, and z''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unity, unitz, False, strict_check)
[docs]def extrinsic_euler_xyz_from_active_matrix(R, strict_check=True): """Compute extrinsic xyz Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around x-, y-, and z-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unity, unitx, False, strict_check)[::-1]
[docs]def intrinsic_euler_yxz_from_active_matrix(R, strict_check=True): """Compute intrinsic yxz Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, x'-, and z''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitx, unitz, False, strict_check)
[docs]def extrinsic_euler_yxz_from_active_matrix(R, strict_check=True): """Compute extrinsic yxz Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, x-, and z-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unitx, unity, False, strict_check)[::-1]
[docs]def intrinsic_euler_yzx_from_active_matrix(R, strict_check=True): """Compute intrinsic yzx Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, z'-, and x''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitz, unitx, False, strict_check)
[docs]def extrinsic_euler_yzx_from_active_matrix(R, strict_check=True): """Compute extrinsic yzx Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around y-, z-, and x-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unitz, unity, False, strict_check)[::-1]
[docs]def intrinsic_euler_zyx_from_active_matrix(R, strict_check=True): """Compute intrinsic zyx Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array, shape (3,) Angles for rotation around z-, y'-, and x''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unity, unitx, False, strict_check)
[docs]def extrinsic_euler_zyx_from_active_matrix(R, strict_check=True): """Compute extrinsic zyx Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array, shape (3,) Angles for rotation around z-, y-, and x-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitx, unity, unitz, False, strict_check)[::-1]
[docs]def intrinsic_euler_zxy_from_active_matrix(R, strict_check=True): """Compute intrinsic zxy Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array, shape (3,) Angles for rotation around z-, x'-, and y''-axes (intrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unitz, unitx, unity, False, strict_check)
[docs]def extrinsic_euler_zxy_from_active_matrix(R, strict_check=True): """Compute extrinsic zxy Cardan angles from active rotation matrix. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- e : array-like, shape (3,) Angles for rotation around z-, x-, and y-axes (extrinsic rotations) """ return _general_intrinsic_euler_from_active_matrix( R, unity, unitx, unitz, False, strict_check)[::-1]
[docs]def axis_angle_from_matrix(R, strict_check=True, check=True): """Compute axis-angle from rotation matrix. This operation is called logarithmic map. Note that there are two possible solutions for the rotation axis when the angle is 180 degrees (pi). We usually assume active rotations. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. check : bool, optional (default: True) Check if rotation matrix is valid Returns ------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle). The angle is constrained to [0, pi]. """ if check: R = check_matrix(R, strict_check=strict_check) cos_angle = (np.trace(R) - 1.0) / 2.0 angle = np.arccos(min(max(-1.0, cos_angle), 1.0)) if angle == 0.0: # R == np.eye(3) return np.array([1.0, 0.0, 0.0, 0.0]) a = np.empty(4) # We can usually determine the rotation axis by inverting Rodrigues' # formula. Subtracting opposing off-diagonal elements gives us # 2 * sin(angle) * e, # where e is the normalized rotation axis. axis_unnormalized = np.array( [R[2, 1] - R[1, 2], R[0, 2] - R[2, 0], R[1, 0] - R[0, 1]]) if abs(angle - np.pi) < 1e-4: # np.trace(R) close to -1 # The threshold is a result from this discussion: # https://github.com/rock-learning/pytransform3d/issues/43 # The standard formula becomes numerically unstable, however, # Rodrigues' formula reduces to R = I + 2 (ee^T - I), with the # rotation axis e, that is, ee^T = 0.5 * (R + I) and we can find the # squared values of the rotation axis on the diagonal of this matrix. # We can still use the original formula to reconstruct the signs of # the rotation axis correctly. a[:3] = np.sqrt(0.5 * (np.diag(R) + 1.0)) * np.sign(axis_unnormalized) else: a[:3] = axis_unnormalized # The norm of axis_unnormalized is 2.0 * np.sin(angle), that is, we # could normalize with a[:3] = a[:3] / (2.0 * np.sin(angle)), # but the following is much more precise for angles close to 0 or pi: a[:3] /= np.linalg.norm(a[:3]) a[3] = angle return a
[docs]def axis_angle_from_quaternion(q): """Compute axis-angle from quaternion. This operation is called logarithmic map. We usually assume active rotations. Parameters ---------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) Returns ------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle). The angle is constrained to [0, pi) so that the mapping is unique. """ q = check_quaternion(q) p = q[1:] p_norm = np.linalg.norm(p) if p_norm < np.finfo(float).eps: return np.array([1.0, 0.0, 0.0, 0.0]) axis = p / p_norm angle = (2.0 * np.arccos(q[0]),) return norm_axis_angle(np.hstack((axis, angle)))
[docs]def axis_angle_from_compact_axis_angle(a): """Compute axis-angle from compact axis-angle representation. We usually assume active rotations. Parameters ---------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z). Returns ------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle). The angle is constrained to [0, pi]. """ a = check_compact_axis_angle(a) angle = np.linalg.norm(a) if angle == 0.0: return np.array([1.0, 0.0, 0.0, 0.0]) axis = a / angle return np.hstack((axis, (angle,)))
[docs]def axis_angle_from_two_directions(a, b): """Compute axis-angle representation from two direction vectors. The rotation will transform direction vector a to direction vector b. The direction vectors don't have to be normalized as this will be done internally. Note that there is more than one possible solution. Parameters ---------- a : array-like, shape (3,) First direction vector b : array-like, shape (3,) Second direction vector Returns ------- a : array, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle). The angle is constrained to [0, pi]. """ a = norm_vector(a) b = norm_vector(b) cos_angle = a.dot(b) if abs(-1.0 - cos_angle) < eps: # For 180 degree rotations we have an infinite number of solutions, # but we have to pick one axis. axis = perpendicular_to_vector(a) else: axis = np.cross(a, b) aa = np.empty(4) aa[:3] = norm_vector(axis) aa[3] = np.arccos(cos_angle) return norm_axis_angle(aa)
[docs]def compact_axis_angle(a): r"""Compute 3-dimensional axis-angle from a 4-dimensional one. In a 3-dimensional axis-angle, the 4th dimension (the rotation) is represented by the norm of the rotation axis vector, which means we transform :math:`\left( \boldsymbol{\hat{e}}, \theta \right)` to :math:`\theta \boldsymbol{\hat{e}}`. We usually assume active rotations. Parameters ---------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle). Returns ------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z) (compact representation). """ a = check_axis_angle(a) return a[:3] * a[3]
[docs]def compact_axis_angle_from_matrix(R): """Compute compact axis-angle from rotation matrix. This operation is called logarithmic map. Note that there are two possible solutions for the rotation axis when the angle is 180 degrees (pi). We usually assume active rotations. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix Returns ------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z). The angle is constrained to [0, pi]. """ a = axis_angle_from_matrix(R) return compact_axis_angle(a)
[docs]def compact_axis_angle_from_quaternion(q): """Compute compact axis-angle from quaternion (logarithmic map). We usually assume active rotations. Parameters ---------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) Returns ------- a : array-like, shape (3,) Axis of rotation and rotation angle: angle * (x, y, z). The angle is constrained to [0, pi]. """ a = axis_angle_from_quaternion(q) return compact_axis_angle(a)
[docs]def quaternion_from_matrix(R, strict_check=True): """Compute quaternion from rotation matrix. We usually assume active rotations. .. warning:: When computing a quaternion from the rotation matrix there is a sign ambiguity: q and -q represent the same rotation. Parameters ---------- R : array-like, shape (3, 3) Rotation matrix strict_check : bool, optional (default: True) Raise a ValueError if the rotation matrix is not numerically close enough to a real rotation matrix. Otherwise we print a warning. Returns ------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) """ R = check_matrix(R, strict_check=strict_check) q = np.empty(4) # Source: # http://www.euclideanspace.com/maths/geometry/rotations/conversions trace = np.trace(R) if trace > 0.0: sqrt_trace = np.sqrt(1.0 + trace) q[0] = 0.5 * sqrt_trace q[1] = 0.5 / sqrt_trace * (R[2, 1] - R[1, 2]) q[2] = 0.5 / sqrt_trace * (R[0, 2] - R[2, 0]) q[3] = 0.5 / sqrt_trace * (R[1, 0] - R[0, 1]) else: if R[0, 0] > R[1, 1] and R[0, 0] > R[2, 2]: sqrt_trace = np.sqrt(1.0 + R[0, 0] - R[1, 1] - R[2, 2]) q[0] = 0.5 / sqrt_trace * (R[2, 1] - R[1, 2]) q[1] = 0.5 * sqrt_trace q[2] = 0.5 / sqrt_trace * (R[1, 0] + R[0, 1]) q[3] = 0.5 / sqrt_trace * (R[0, 2] + R[2, 0]) elif R[1, 1] > R[2, 2]: sqrt_trace = np.sqrt(1.0 + R[1, 1] - R[0, 0] - R[2, 2]) q[0] = 0.5 / sqrt_trace * (R[0, 2] - R[2, 0]) q[1] = 0.5 / sqrt_trace * (R[1, 0] + R[0, 1]) q[2] = 0.5 * sqrt_trace q[3] = 0.5 / sqrt_trace * (R[2, 1] + R[1, 2]) else: sqrt_trace = np.sqrt(1.0 + R[2, 2] - R[0, 0] - R[1, 1]) q[0] = 0.5 / sqrt_trace * (R[1, 0] - R[0, 1]) q[1] = 0.5 / sqrt_trace * (R[0, 2] + R[2, 0]) q[2] = 0.5 / sqrt_trace * (R[2, 1] + R[1, 2]) q[3] = 0.5 * sqrt_trace return q
[docs]def quaternion_from_axis_angle(a): """Compute quaternion from axis-angle. This operation is called exponential map. We usually assume active rotations. Parameters ---------- a : array-like, shape (4,) Axis of rotation and rotation angle: (x, y, z, angle) Returns ------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) """ a = check_axis_angle(a) theta = a[3] q = np.empty(4) q[0] = np.cos(theta / 2) q[1:] = np.sin(theta / 2) * a[:3] return q
[docs]def quaternion_from_compact_axis_angle(a): """Compute quaternion from compact axis-angle (exponential map). We usually assume active rotations. Parameters ---------- a : array-like, shape (4,) Axis of rotation and rotation angle: angle * (x, y, z) Returns ------- q : array-like, shape (4,) Unit quaternion to represent rotation: (w, x, y, z) """ a = axis_angle_from_compact_axis_angle(a) return quaternion_from_axis_angle(a)
[docs]def quaternion_xyzw_from_wxyz(q_wxyz): """Converts from w, x, y, z to x, y, z, w convention. Parameters ---------- q_wxyz : array-like, shape (4,) Quaternion with scalar part before vector part Returns ------- q_xyzw : array-like, shape (4,) Quaternion with scalar part after vector part """ q_wxyz = check_quaternion(q_wxyz) return np.array([q_wxyz[1], q_wxyz[2], q_wxyz[3], q_wxyz[0]])
[docs]def quaternion_wxyz_from_xyzw(q_xyzw): """Converts from x, y, z, w to w, x, y, z convention. Parameters ---------- q_xyzw : array-like, shape (4,) Quaternion with scalar part after vector part Returns ------- q_wxyz : array-like, shape (4,) Quaternion with scalar part before vector part """ q_xyzw = check_quaternion(q_xyzw) return np.array([q_xyzw[3], q_xyzw[0], q_xyzw[1], q_xyzw[2]])